Pluto Looks Young

Six months ago, I wrote about the New Horizons mission to Pluto, and predicted the NASA scientists would be surprised by the former-planet’s youth once the spacecraft arrived there.

While we can’t say for sure what we’ll find when New Horizons reaches Pluto, one thing seems almost certain: the astronomers are probably in for a surprise.

Well, yesterday New Horizons arrived, and today NASA is saying this:

Mountains on Pluto

New close-up images of a region near Pluto’s equator reveal a giant surprise: a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body.

The mountains likely formed no more than 100 million years ago — mere youngsters relative to the 4.56-billion-year age of the solar system — and may still be in the process of building, says Jeff Moore of New Horizons’ Geology, Geophysics and Imaging Team (GGI). That suggests the close-up region, which covers less than one percent of Pluto’s surface, may still be geologically active today.

Moore and his colleagues base the youthful age estimate on the lack of craters in this scene. Like the rest of Pluto, this region would presumably have been pummeled by space debris for billions of years and would have once been heavily cratered — unless recent activity had given the region a facelift, erasing those pockmarks.

“This is one of the youngest surfaces we’ve ever seen in the solar system,” says Moore.

Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape.

“This may cause us to rethink what powers geological activity on many other icy worlds,” says GGI deputy team leader John Spencer of the Southwest Research Institute in Boulder, Colo.

Perhaps they would do better to rethink Pluto’s age. The Bible declares that God made all of the heavenly bodies on day 4 of creation week, only about 6000 years ago. That’s why literally all of the the objects in the solar system look much younger than Big Bang scientists expect.

Take for example another post on the NASA blog, just prior to the one on Pluto, titled Charon’s Surprising and Youthful Varied Terrain:

Mission scientists are surprised by the apparent lack of craters on Charon. […] relatively few craters are visible, indicating a relatively young surface that has been reshaped by geologic activity.

Another example is the mysterious bright spots on Ceres that were discovered by the Dawn spacecraft:

The closer we get to Ceres, the more intriguing the distant dwarf planet becomes. New images of Ceres from NASA’s Dawn spacecraft provide more clues about its mysterious bright spots, and also reveal a pyramid-shaped peak towering over a relatively flat landscape.

[…]

Dawn has been studying the dwarf planet in detail from its second mapping orbit, which is 2,700 miles (4,400 kilometers) above Ceres. A new view of its intriguing bright spots, located in a crater about 55 miles (90 kilometers) across, shows even more small spots in the crater than were previously visible.

At least eight spots can be seen next to the largest bright area, which scientists think is approximately 6 miles (9 kilometers) wide. A highly reflective material is responsible for these spots — ice and salt are leading possibilities, but scientists are considering other options, too.

While it is possible that these spots are being caused by a reflective material, I think the most likely explanation is that the region at the center of this crater is volcanically active and that these spots are caused by the presence of hot magma in the region. Of course, the scientists would never expect that. A body so small would be cold and dead after billions of years.

As Psalm 19 says,

The heavens declare the glory of God; and the firmament sheweth his handywork. Day unto day uttereth speech and night unto night sheweth knowledge.

Without a knowledge of the Creator, these scientists and their spacecraft are literally wandering around in the dark.

The Living Computer

This post was originally published on my dev blog, CodeSymphony.co.

I’m a programmer, but I’m also a nature lover, and I enjoy learning more about all of the sciences, especially biology. Recently, I’ve come to realize how much programming and biology share in common.

The basic building block of life is the cell. Actually, cells don’t have to just be building blocks. Single-celled creatures are just one single cell. And yet they have to confront all of the same basic challenges to life that you and I do.

Are Cells Computers?

Are cells living computers? No. They are so much more than that. But, just like you and I have a brain that has amazing computational power, cells have some aspects that are computer-like as well. Cells don’t have brains of course, or anything analogous to a nervous system. But they do have something else, an aspect that we don’t even understand yet in regard to the brain. They have software. Actually, we can go further than that. Cells have a complete OS.

There are several programming languages involved; one of the most well known is DNA. “But wait, isn’t DNA for storing information?” Thanks for asking! Actually, yes, you are correct, DNA is used by the cell to store huge volumes of information, which includes the blueprint not only for the cell’s structure, but also for its development. In your cells’ nuclei is all of the information needed to construct and maintain your body. How much is this? Over 3.2 billion base-pairs of DNA.

The Biotic Byte

Let’s convert that number to something more familiar. Instead of base-pairs, we could use bytes. Let’s take a minute to talk about bytes, just to show that this is a valid comparison. Bytes are actually groups of smaller units, called bits. Bits are binary; they can only be one of two things, a zero or a one. A byte is a string of exactly 8 bits. There are 2^8 or 256 different possible combinations of 8 bits, and so there are 256 unique bytes.

A strand of DNA is made up of base-pairs. These are in groups of three, called codons. We can think of these codons like bytes, and like bytes they are also made up of smaller units, the base-pairs. Unlike bits, which come in only two types, DNA is made bases that come in 4 different letters, A, C, T, and G. That means that twice as much information can be stored in a single letter as can be represented by a bit. So 4 letters of DNA can store the same amount of information as one byte.

Now that we know how to convert codons to bytes, we can do the math. We have 3.2 billion base-pairs or letters, so to get the number of bytes we just divide by 4: 3.2 billion / 4 ≈ 0.8 billion. So the size of the human genome is approximately 800 million bytes, or 763 megabytes.

Now think of this: Each cell in your body has two copies of the genome (except for red blood cells, which have none). And it’s estimated that there are 37.2 trillion cells in the average adult human body. Even if we assume that 17 trillion of these are red blood cells, that means that your body contains 23 trillion gigabytes of DNA. That could also be written as 22 million petabytes, or 21 zettabytes. To put this in perspective, the world’s total effective two-way telecommunications capacity was “only” 65,000 petabytes per-day in 2007. At that rate, to transmit all of the information encoded on all of the DNA in your body, it would take almost a whole year.

A year. And yet all of that information fits inside of you. Despite the fact that the strands of DNA in a single cell would stretch out to about 2 m (6 ft) long if laid end to end, in the nucleus they packed into a whopping diameter of just 6-10 millionths of a meter. That means all of the DNA in your body could fit into a 22 cm (8.5 in) cube. Let’s compare that size to how much room it would take to store the same amount of information on computers. Let’s imagine we put it all onto 1 terabyte hard drives that measure 3 in by 4 in by 0.5 in. They would make a cube about 424 ft (130 m) on a side. A building of that size would have a volume of 76 million cu ft, which would make it the eighth largest building in the world.

Not Just For Information Storage

DNA is obviously an extremely efficient medium of information storage. We’ve looked at it from the angle of just how much your body contains. But we can also look at it from the other angle. A single copy of the entire human genome takes up only 0.8 gigabytes. Compare that with the raw size of OS X Yosemite, which is 5.18 gigabytes. Windows 8 requires about 6–8 gigabytes. In other words, modern computer operating systems take almost 10 times as much code as it takes to create and run your body.

DNA is like a computer program but far, far more advanced than any software ever created.—Bill Gates, founder of Microsoft, in The Road Ahead

The really amazing thing about DNA—and this is what I started out to say a while back—is that it isn’t just a blueprint. Most of it doesn’t encode genes. Not even close. The protein-coding portion takes up less than 2% of your DNA, or about 15 megabytes. So what does the rest of the DNA do? Lot’s of things, actually. It does so much, in fact, that we aren’t even beginning to understand it all. But we do know enough to know that DNA is far more than a blueprint. Is it a computer program? Sort of. It really goes beyond that, but that’s the closest thing to it we’ve ever created.

Beyond Programming

As a programmer, it is amazing how much DNA is like a programming language. However, it is even more amazing how much DNA goes beyond modern programming.

How can DNA program for so much in such little space? We can’t yet fully answer that question, but we’re starting to find clues. One is that DNA isn’t just one programming language. It is several, all at once. The same DNA strand can code for several different codes, in both directions. I can’t imagine trying to write code that has to do one thing when read forwards and another when read backwards. Most of our languages couldn’t possibly do that, because of their syntax. They are inherently one-way.

Take PHP for example. Its syntax requires the code to be interpreted from left to right. It’s not just that you couldn’t interpret it backwards as PHP, but it would be really difficult even to create a language with inverted PHP syntax. The same goes for JavaScript.

Of course, some languages are simpler (like BASIC), and could potentially work forwards and backwards. These languages are also far less human-readable. They are already hard for us to grok as it is, so how in the world would we ever be able to write meaningful two-way code like that? It might seem like it would be easy to do, if we just wrote the one-way code and used computer algorithms to compress it into two-way code. But that’s far easier said than done.

The Modular Genome

Among programming best practices is that of writing modular code. Instead of creating one huge, garbled, interconnected whole, a project can be split into discrete parts that are interoperable.

While I was contemplating writing this post, I happened to come across an article that revealed that some genomes are like this. Actually, all genomes are modular, in the sense that they are made up of discrete genes. But what has been discovered in this case is something different. The DNA isn’t just modular, it is actually split into discrete packages.

The genome of the unicellular ciliate Stylonychia lemnae is really astounding. These creatures actually maintain two copies of their genome in separate nuclei. In one nucleus, called the micronucleus, all of the DNA is stored in a single chromosome. In the other nucleus the DNA is split into thousands of different chromosomes. More than 16 thousand, to be exact. This type of nucleus is much larger than the other, and is called the macronucleus.

The moment I read this, I thought of packagist.org. Thousands of different discrete modules maintained in a single repository. Actually though, it is much more like the plugin repository on WordPress.org, which isn’t just a listing directory, but actually holds all of the code for the 37,000+ plugins in a single SVN repository.

The fascinating thing is that the macronulceus is about 10 times larger than the micronucleus. In effect, this means that the copy of the genome which is used in genetic transmission is kept under 10x compression. 10x! It is amazing that the genome can be compressed this much, and yet still be usable for genetic recombination.

Compile-time Optimization

Languages like PHP get compiled into machine code. Some compilers have features that modify the compiled code in various ways to try to improve its performance. This is called compile-time optimization. It’s usually not trivial to do this, because the compiler is risking the possibility of introducing a bug instead of an optimization. It can also mean compilation itself is much less performant, because the compiler has to run sophisticated algorithms over the code.

In the genome, we might think of the transcription of DNA to RNA as compilation. It’s been known for some time that the nucleus sometimes makes modifications to the RNA after transcription. That’s kind of like compile-time optimization. But in fact, it is much more than that. Sometimes the changes are very simple, and affect just a single base. It’s been recently discovered that this type of RNA editing may be very common. But it has also been known for some time that much more complex forms of RNA editing occur as well. This is called alternative splicing, and it involves taking a gene and splitting it into its modular components. These are then rearranged from their usual configuration, with some being doubled or removed. Then they might be combined with pieces of a completely different gene.

This goes beyond our conventional compile-time optimizations. It’d be like compiling two different components of a program, breaking them down into smaller pieces, and rearranging them to create something entirely new.

Living Programmer

As a programmer, all of this is fascinating. I can sit here and write computer programs because of the trillions of programs being run inside of my body’s cells. This naturally leads us to a question: where did those programs come from? Who wrote them?

You might answer, “I don’t know.” But a staunch evolutionist will tell you that is the wrong answer. (Unless you catch him off guard.) They will tell you no-one wrote the program. As a programmer, that’s unbelievable. As a programmer, I know that programs don’t just happen, they take intelligence. And just being “smart” isn’t enough: you have to have skill too, you have to know the language. Even with high intelligence and superb skill, how often do we get it right the first time? How often do we have to do lot’s of testing to make sure the thing really works?

Yet evolutionists would have us believe that the unimaginable complexity of the genome happened by accident, that a programming language just created itself, and that, over time, a program was shaped through typos in the code.

Of course, as a programmer, I know that is ludicrous. One typo or mistake can easily kill a program. Even if a typo isn’t syntactically invalid, it can still cause the program to stop working properly. And even if that doesn’t happen, it’s still highly probable that a small bug has been introduced by it—and those small bugs are the real killers. You can argue that natural selection will, in effect, “weed out” those really bad bugs. And that’s true (though the reproduction rate isn’t high enough to sustain that level of mutation for millions of years). But you can’t say that about the small bugs. They’re little changes that don’t really seem to have much effect—most of the time. Instead, they’ll build up in the population until it is driven to the point of extinction.

Just imagine a program you’ve written being eroded this way over time. Before long, it would cease to do anything useful at all.

As a programmer, it is obvious: someone programmed me. And not just anyone either. Someone who has unbelievable intelligence, skill, and artistry. Someone who can build something infinitely more complex than Microsoft Windows, using less code, and even have that thing reproduce itself. Do you know anyone like that? It clearly wasn’t one of us. It clearly wasn’t any other form of biological life either (from here or elsewhere), because all life is based on programs. All life requires a Programmer.

As one living programmer, let me ask you: have you met the Programmer of all life? Have you met the living Programmer?

Will Pluto Surprise Us?

As NASA’s New Horizons mission approaches the former-planet Pluto, I’ve started to rethink what they might find there. I remember reading as a child about how Pluto was made of ice and rock—a cold, dead world. Of course, scientists “know” this is what Pluto must be like, even though it is only a speck in the sky when viewed through our most powerful telescopes. No body so far from the sun could be anything but frozen, right?

This conclusion is natural if we accept the ruling cosmogony, which says that the solar system formed from a swirling cloud of gas over 4.5 billion years. The majority of scientists believe this right? So there must be something to it.

But let’s take a moment to consider how well past predictions of this model have matched what we observe. The model predicted that Uranus and Neptune shouldn’t be radiating a greater amount of heat than they receive from the sun, shouldn’t have very strong magnetic fields, and shouldn’t be geologically or atmospherically active. Basically, they should be cold and dead.

So how did those predictions stand up to reality? When the Voyager 1 and 2 spacecraft visited Uranus and Neptune, they discovered that these planets aren’t cold and dead. They both have strong magnetic fields. They both radiate more heat energy out into space than they get from the sun. And Neptune has the strongest winds in the solar system, measured at more than 1100 mph. In other words, they are both warm and active.

This isn’t a surprise to the biblical creationist, since he knows that the solar system is young. While 6000 years is sufficient time for a rather small body to cool down and enter geological and atmospheric stasis, we’d still expect any large body to be warm and active. We not only weren’t surprised by this, we even correctly predicted the  strength of Uranus magnetic field, in sharp contrast to the evolutionists’ predictions.

So you can see why I ask the question, “Will Pluto surprise us?”

While Pluto is much smaller, and (usually) further away than the outer planets, is it large enough that it might still retain some heat? Is it’s atmosphere going to be active? Might we even find evidence one day that it once had a strong magnetic field?

While we can’t say for sure what we’ll find when New Horizons reaches Pluto, one thing seems almost certain: the astronomers are probably in for a surprise.